| HK5V 600 H20 |
±600 |
±900 |
±12...15 |
±4V |
±1.0 |
20 |
-25~85 |
16mm×64mm |
|
2EDG-4P-3.81 |
- Open loop sensor using the Hall Effect
- Galvanic insulation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Double Hall design
- Open installation
- Battery pack current detection
- Smart power grid
- Standards:
- IEC 60664-1:2020
- IEC 62109-1:2010
- IEC 61800-5-1:2022
more...
|
| HK5V 400 H20 |
±400 |
±600 |
±12...15 |
±4V |
±1.0 |
20 |
-25~85 |
16mm×64mm |
|
2EDG-4P-3.81 |
- Open loop sensor using the Hall Effect
- Galvanic insulation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Double Hall design
- Open installation
- Battery pack current detection
- Smart power grid
- Standards:
- IEC 60664-1:2020
- IEC 62109-1:2010
- IEC 61800-5-1:2022
more...
|
| HK5V 200 H20 |
±200 |
±300 |
±12...15 |
±4V |
±1.0 |
20 |
-25~85 |
16mm×64mm |
|
2EDG-4P-3.81 |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Double Hall design
- Open installation
- Standards:
- IEC 60664-1:2020
- IEC 62109-1:2010
- IEC 61800-5-1:2022
more...
|
| HK4V 5000 H00 |
5000 |
±6000 |
±15 |
5V |
±1.0 |
DC...40 |
-40~85 |
112mm x 30mm |
|
2EDG-4P-3.81 |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HK4V 3000 H00 |
3000 |
±5500 |
±15 |
4V |
±1.0 |
DC...40 |
-40~85 |
112mm×30mm |
|
2EDG-4P-3.81 |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HK4V 2000 H00 |
2000 |
±4000 |
±15 |
4V |
±1.0 |
DC...40 |
-40~85 |
112mm x 30mm |
|
2EDG-4P-3.81 |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CN1A 25 PB00 |
25 |
±36 |
±15 |
±25mA |
±0.5 |
150 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
- Industrial Hall effect current sensors for UPS
more...
|
| VN4A 750 M15 |
750V |
±1125V |
±15...24 |
50mA |
±1.0 |
14 |
-40~85 |
NA |
|
M5 thread screw |
- Closed loop (compensated) voltage sensor using the Hall Effect.
- Galvanic insulation between the primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Good linearity
- Very low offset drift over temperature
- Resistant to strong external interference
- Standards:
- IEC 60664-1:2020
- IEC 61800-5-1:2022
- IEC 62109-1:2010
- EN 50155:2017
more...
|
| CN2A 40 PB01 |
40 |
±110 |
±12...15 |
±20mA |
±0.5 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:
- IEC 60664-1:2020 IEC 61800-5-1:2022 IEC 62109-1:2010
- Premium Made in China dc hall effect current tranducer
more...
|
| CS3A 50 P01 |
50 |
±90 |
±12...15 |
±50...90mA |
±0.3 |
200 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
- High quality good linearity ±0.05% PCB mount type Hall current sensor
more...
|
| CS3A 50 P51 |
50 |
±90 |
±12...15 |
±50...90mA |
±0.3 |
150 |
-20~75 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
- Closed loop Hall effect AC/DC current sensor
- Output 30+IsmA AC/DC, power supply±12 V ~ ±15 V DC, primary busbar13.5x10.0mm
more...
|
| CN2A 50 PB01 |
50 |
±110 |
±12...15 |
±25mA |
±0.5 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
- Measurement:Current Nominal Value:50A
- Measuring Range:110A
- Supply voltage range:12-15V
- Accuracy:0.5%
- Technology:Closed loop Hall effect
- Mounting:PCB
In the field of industrial applications, power electronic devices are essential for driving and control. - As electrical systems become more complex, the requirements for precise coordination among power semiconductors,
- system controllers, mechanical components, and feedback units increase.
- Sensors can then obtain the necessary information from the load and provide it to the system to achieve this function
more...
|
| CN2A 80 PB01 |
80 |
±160 |
±12...15 |
±40mA |
±0.5 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
- Closed-loop current sensors perform exceptionally well in applications requiring high-precision measurement,
- wide bandwidth and fast response times, and are suitable for industries such as manufacturing, energy and rail transit.
more...
|
| CN2A 100 PB01 |
100 |
±160 |
±12...15 |
±50mA |
±0.5 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
- A Hall current sensor measures electrical current indirectly by detecting the magnetic field it generates, using the Hall effect: current flows through a conductor (often a lead frame), creating a proportional magnetic field that a Hall element senses and converts into an isolated voltage output, providing non-intrusive measurement ideal for high currents and electrical isolation in applications like electric vehicles and industrial machines.
more...
|
| CR1A 100 H00 |
100 |
±200 |
±12...15 |
±50...100mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
MOLEX 5045-04A |
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
High Accurate Hall Effect AC/DC Current Sensor Output: 50 mA - 250 mA AC/DC, Power Supply: ±12 V ~ ±15 V DC, Window: Ø 23 mm, Connector: Screw Hall effect current sensors are mainly used in industrial automation, telecommunications, public utilities, as well as in medical, aerospace, defense, consumer electronics, automotive, and railway industries for current monitoring, overcurrent fault detection, and power measurement. It features no insertion loss, low power consumption, compact package size, single/dual power supply, high precision, high sensitivity, electrical isolation and fast response time.
more...
|
| CR1A 100 H01 |
100 |
±200 |
±12...15 |
±50...100mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
JK126-500-3P |
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
- Supply voltage ±12V ±15V JK126-500-3P connection
more...
|
| CS3A 100 P00 |
100 |
±150 |
±12...15 |
±100...150mA |
±0.3 |
150 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
- High accuracy ±0.3% hall effect current tranducer primary busbar 13.5x10.0mm based on PCB mount type
more...
|
| CS3A 100 P01 |
100 |
±160 |
±12...15 |
±100...160mA |
±0.3 |
200 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CS3A 125 P00 |
125 |
±200 |
±12...15 |
±125...200mA |
±0.3 |
150 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CR1A 200 H00 |
200 |
±400 |
±12...15 |
±100...200mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
MOLEX 5045-04A |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CR1A 200 H01 |
200 |
±400 |
±12...15 |
±100...200mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
JK126-500-3P |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CM1A 200 H00 |
200 |
±420 |
±12...15 |
±100...210mA |
±0.2 |
100 |
-40~85 |
Ø15.6 |
|
Molex 6410 |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CR1A 300 H00 |
300 |
±500 |
±12...15 |
±150...250mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
MOLEX 5045-04A |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CR1A 300 H01 |
300 |
±500 |
±12...15 |
±150...250mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
JK126-500-3P |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CR1A 300 H02 |
300 |
±500 |
±12...15 |
±150...250mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
HX39600-3Y |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CM2A 300 H00 |
300 |
±500 |
±12...20 |
±150...250mA |
±0.3 |
100 |
-40~85 |
Ø20 |
|
Molex 6410 |
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
| CR2A 400 H00 |
400 |
±600 |
±15...24 |
±100...150mA |
±0.5 |
100 |
-40~85 |
Ø35.0 |
|
JK126-500-3P |
- Closed loop(compensated)current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| CR2A 500 H00 |
500 |
±800 |
±15...24 |
±100...160mA |
±0.5 |
100 |
-40~85 |
Ø35.0 |
|
JK126-500-3P |
- Closed loop(compensated)current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| CM3A 500 H00 |
500 |
±800 |
±15...24 |
±100...160mA |
±0.5 |
100 |
-40~85 |
Ø30 |
|
Molex 6410 |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CM3A 500 H01 |
500 |
±800 |
±15...24 |
±100...160mA |
±0.5 |
100 |
-40~85 |
Ø30 |
|
JST B3P VH |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CM4A 1000 H00 |
1000 |
±2100 |
±15...24 |
±200...420mA |
±0.3 |
150 |
-40~85 |
Ø38 |
|
Molex 6410 |
- Closed loop(compensated)current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| CM4A 1000 H03 |
1200 |
±1800 |
±24 |
±300...450mA |
±0.4 |
150 |
-40~85 |
Ø38 |
|
JST B3P VH |
- Closed loop(compensated)current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| CM4A 1000 H05 |
1000 |
±2100 |
±15...24 |
±200...420mA |
±0.3 |
150 |
-40~85 |
Ø38 |
|
JST B3P VH |
- Closed loop(compensated)current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| HK1A 400 H00 |
400 |
±480 |
12 |
4...20mA |
±1.0 |
DC |
-25~85 |
Ø41.3 |
|
2EDGV-3.81-4P |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CM5A 2000 H20 |
2000 |
±4250 |
±15...24 |
±400...850mA |
±0.3 |
150 |
-40~85 |
Ø57.5 |
|
JST B3P VH |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 50 H00 |
50 |
±150 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20x10 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 50 H05 |
50 |
±150 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20x10 mm |
|
MOLEX 5045-04A |
- Open loop sensor using the Hall Effect
- Output voltage is proportional to supply voltage
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HR1V 50 H01 |
50 |
±100 |
±12...15 |
±5V |
±1.0 |
20 |
-40~85 |
Ø20 |
|
JK2EDG-5.08-4P |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| HS1V 100 H05 |
100 |
±300 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20x10 mm |
|
MOLEX 5045-04A |
- Open loop sensor using the Hall Effect
- Output voltage is proportional to supply voltage
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HR1V 100 H01 |
100 |
±200 |
±12...15 |
±5V |
±1.0 |
20 |
-40~85 |
Ø20 |
|
JK2EDG-5.08-4P |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| HR1M 100 H00 |
100 |
±600 |
20...50 |
4...20mA |
±1 |
20~6000 |
-40~85 |
Ø35.0 |
|
WJ2EDGVC-5.08-4P-14 |
- True rms output 4-20mA
- Primary hole:Φ35mm
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 61010-1: 2000,UL 508: 2010
more...
|
| HS1V 200 H00 |
200 |
±600 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20x10 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 200 H05 |
200 |
±600 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20x10 mm |
|
MOLEX 5045-04A |
- Open loop sensor using the Hall Effect
- Output voltage is proportional to supply voltage
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 200 H05 |
200 |
±600 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HR1V 200 H01 |
200 |
±400 |
±12...15 |
±5V |
±1.0 |
20 |
-40~85 |
Ø20 |
|
JK2EDG-5.08-4P |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| HR1M 200 H00 |
200 |
±600 |
20...50 |
4...20mA |
±1 |
20~6000 |
-40~85 |
Ø35.0 |
|
WJ2EDGVC-5.08-4P-14 |
- True rms output 4-20mA
- Primary hole:Φ35mm
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 61010-1: 2000,UL 508: 2010
more...
|
| HS1V 300 H00 |
300 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20x10 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 300 H05 |
300 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20x10 mm |
|
MOLEX 5045-04A |
- Open loop sensor using the Hall Effect
- Output voltage is proportional to supply voltage
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HR1V 300 H01 |
300 |
±600 |
±12...15 |
±5V |
±1.0 |
20 |
-40~85 |
Ø20 |
|
JK2EDG-5.08-4P |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| HR1M 300 H00 |
300 |
±1000 |
20...50 |
4...20mA |
+1 |
20~6000 |
-40~85 |
Ø35.0 |
|
WJ2EDGVC-5.08-4P-14 |
- True rms output 4-20mA
- Primary hole:Φ35mm
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 61010-1: 2000,UL 508: 2010
more...
|
| HS1V 50 H04 |
50 |
±150 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
XH2.54-4P |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 400 H00 |
400 |
±900 |
±12...15 |
±4V |
+1.0 |
50 |
-40~105 |
20x10 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HR1V 400 H01 |
400 |
±800 |
±12...15 |
±5V |
±1.0 |
20 |
-40~85 |
Ø20 |
|
JK2EDG-5.08-4P |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| HR1M 400 H00 |
400 |
±1000 |
20...50 |
4...20mA |
+1 |
20~6000 |
-40~85 |
Ø35.0 |
|
WJ2EDGVC-5.08-4P-14 |
- True rms output 4-20mA
- Primary hole:Φ35mm
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very low offset drift over temperature
- No insertion loss
- Standards:
- IEC 61010-1: 2000
- UL 508: 2010
more...
|
| HS2V 500 H05 |
500 |
±1500A |
±15 |
±4V |
+1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
MOLEX 5045-04A |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL94-V0
- No insertion loss
- Small size
- Standards:
- IEC 60664-1:2020
- IEC 61800-5-1:2022
- IEC 62109-1:2010
more...
|
| HR1V 500 H01 |
500 |
±900 |
±12...15 |
±5V |
+1.0 |
20 |
-40~85 |
Ø20 |
|
JK2EDG-5.08-4P |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| HR1M 500 H00 |
500 |
±1800 |
20...50 |
4...20mA |
±1.0 |
20~6000 |
-40~85 |
Ø35.0 |
|
WJ2EDGVC-5.08-4P-14 |
- True rms output 4-20mA
- Primary hole:Φ35mm
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very low offset drift over temperature
- No insertion loss
- Standards:
- IEC 61010-1: 2000
- UL 508: 2010
more...
|
| HS1V 600 H00 |
600 |
±900 |
±12...15 |
±4V |
+1.0 |
50 |
-40~105 |
20x10 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:
- IEC 60664-1:2020
- IEC 61800-5-1:2022
- IEC 62109-1:2010
more...
|
| HS2V 600 H05 |
600 |
±1800 |
±15 |
±4V |
+1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
MOLEX 5045-04A |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL94-V0
- No insertion loss
- Small size
- Standards:
- IEC 60664-1:2020
- IEC 61800-5-1:2022
- IEC 62109-1:2010
more...
|
| HS3V 800 H00 |
800 |
+2400 |
±15 |
±4V |
+1.0 |
25 |
-40~85 |
64 x 21 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:
- IEC 60664-1:2020
- IEC 61800-5-1:2022
- IEC 62109-1:2010
more...
|
| HS2V 1000 H05 |
1000 |
±2500 |
±15 |
±4V |
+1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
MOLEX 5045-04A |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL94-V0
- No insertion loss
- Small size
- Standards:
- IEC 60664-1:2020
- IEC 61800-5-1:2022
- IEC 62109-1:2010
more...
|
| HS2V 1500 H05 |
1500 |
±2500 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
MOLEX 5045-04A |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL94-V0
- No insertion loss
- Small size
- Standards:
- IEC 60664-1:2020
- IEC 61800-5-1:2022
- IEC 62109-1:2010
more...
|
| HS1V 50 H03 |
50 |
±150 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm - 500mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS3V 1500 H00 |
1500 |
±4500 |
±15 |
±4V |
±1.0 |
25 |
-40~85 |
64 x 21 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:
- IEC 60664-1:2020
- IEC 61800-5-1:2022
- IEC 62109-1:2010
more...
|
| HS3V 2000 H00 |
2000 |
±5500 |
±15 |
±4V |
±1 |
25 |
-40~85 |
64 x 21 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:
- IEC 60664-1:2020
- IEC 61800-5-1:2022
- IEC 62109-1:2010
more...
|
| HS3V 3000 H00 |
3000 |
±5500 |
±15 |
±4V |
±1.0 |
25 |
-40~85 |
64 x 21 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:
- IEC 60664-1:2020
- IEC 61800-5-1:2022
- IEC 62109-1:2010
more...
|
| AS1V 30 H05 |
30 |
±30 |
5 |
2.5±0.625V |
+1 |
50 |
-40~105 |
20.5x10.5 mm |
|
RVVP 3×0.3mm×0.3mm-1000 |
- Open loop current sensor using the Hall Effect.
- Output voltage is proportional to the supply voltage
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Supply voltage: +5V
- No insertion loss.
- Small size
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AN1V 50 PB511 |
50 |
±50 |
5 |
2.5±2V |
±1.0 |
250 |
-40~150 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards:
- IEC 60664-1:2020
- IEC 61800-5-1:2022
- IEC 62109-1:2010
more...
|
| AN1V 50 PB512 |
50 |
±50 |
5 |
2.5±2V |
±1.0 |
250 |
-40~150 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards:
- IEC 60664-1:2020
- IEC 61800-5-1:2022
- IEC 62109-1:2010
more...
|
| AN1V 50 PB501 |
50 |
50 |
5 |
0.55...4.55V |
±1.0 |
250 |
-40~150 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 50 PB502 |
50 |
50 |
5 |
0.55...4.55V |
±1.0 |
250 |
-40~150 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 50 PB311 |
50 |
±50 |
3.3 |
1.65±1.32V |
±1.0 |
250 |
-40~150 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 50 PB312 |
50 |
±50 |
3.3 |
1.65±1.32V |
±1.0 |
250 |
-40~150 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AS1V 50 H00 |
50 |
±50 |
5 |
2.5±2V |
±1.0 |
50 |
-40~105 |
20.5x10.5 mm |
MOLEX 5045-04A |
|
- Open loop current sensor using the Hall Effect.
- Output voltage is proportional to the supply voltage
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Supply voltage: +5V
- No insertion loss.
- Small size
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AS1V 50 H01 |
50 |
±150 |
5 |
2.5±0.625V |
±1.0 |
50 |
-40~105 |
20.5x10.5 mm |
MOLEX 5045-04A |
|
- Open loop current sensor using the Hall Effect.
- Output voltage is proportional to the supply voltage
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Supply voltage: +5V
- No insertion loss.
- Small size
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AN1V 100 PB511 |
100 |
±100 |
5 |
2.5±2V |
±1.0 |
250 |
-40~150 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 100 PB512 |
100 |
±100 |
5 |
2.5±2V |
±1.0 |
250 |
-40~150 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 100 PB501 |
100 |
100 |
5 |
0.55...4.55V |
±1.0 |
250 |
-40~150 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 100 PB502 |
100 |
100 |
5 |
0.55...4.55V |
±1.0 |
250 |
-40~150 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 100 PB311 |
100 |
±100 |
3.3 |
1.65±1.32V |
±1.0 |
250 |
-40~150 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 100 PB312 |
100 |
±100 |
3.3 |
1.65±1.32V |
±1.0 |
250 |
-40~150 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AS1V 100 H00 |
100 |
±100A |
5 |
2.5±2 |
±1.0 |
50 |
-40~105 |
20.5 x 10.5 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall Effect.
- Output voltage is proportional to the supply voltage
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Supply voltage: +5V
- No insertion loss.
- Small size
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AS1V 100 H01 |
100 |
±300 |
5 |
2.5±0.625V |
±1.0 |
50 |
-40~105 |
20.5 x 10.5 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall Effect.
- Output voltage is proportional to the supply voltage
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Supply voltage: +5V
- No insertion loss.
- Small size
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AS1V 100 H07 |
100 |
±100 |
5 |
2.5±0.625V |
±1.0 |
50 |
-40~105 |
20.5 x 10.5 mm |
|
RVVP 3 x 0.3mmx 0.3mm -600 |
Open loop current sensor using the Hall Effect Galvanic separation between primary and secondary Insulating plastic case recognized according to UL 94-V0 Supply voltage:+5V No insertion loss Small size Standards: IEC 60664-1:2020 IEC 61800-5-1:2022 IEC 62109-1:2010
more...
|
| AR1A 100 H00 |
100 |
±100 |
±12...15 |
±20mA |
±1.0 |
5 |
-40~85 |
Ø20.0 |
|
JK2EDG-5.08-4P |
- Open loop current sensor using the Hall effect.
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Nominal output current 20mA
- Good linearity
- High accuracy
- Very low offset drift over temperature.
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AR1A 100 H01 |
100 |
±100 |
±12...15 |
±100mA |
±1.0 |
5 |
-40~85 |
Ø20.0 |
|
JK2EDG-5.08-4P |
- Open loop current sensor using the Hall effect.
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Nominal output current 100mA
- Good linearity
- High accuracy
- Very low offset drift over temperature.
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AN1V 150 PB511 |
150 |
±150 |
5 |
2.5±2V |
±1.0 |
250 |
-40~125 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 150 PB512 |
150 |
±150 |
5 |
2.5±2V |
±1.0 |
250 |
-40~125 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 150 PB501 |
150 |
150 |
5 |
0.55...4.55V |
±1.0 |
250 |
-40~125 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 150 PB502 |
150 |
150 |
5 |
0.55...4.55V |
±1.0 |
250 |
-40~125 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 150 PB311 |
150 |
±150 |
3.3 |
1.65±1.32V |
±1.0 |
250 |
-40~125 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 150 PB312 |
150 |
±150 |
3.3 |
1.65+1.32V |
±1.0 |
250 |
-40~125 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 200 PB511 |
200 |
±200 |
5 |
2.5±2V |
±1.0 |
250 |
-40~85 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 200 PB512 |
200 |
±200 |
5 |
2.5±2V |
±1.0 |
250 |
-40~85 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 200 PB501 |
200 |
200 |
5 |
0.55...4.55V |
±1.0 |
250 |
-40~85 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 200 PB502 |
200 |
0-200 |
5 |
0.55+4V |
±1.0 |
250 |
-40~85 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 200 PB311 |
200 |
±200 |
3.3 |
1.65±1.32V |
±1.0 |
250 |
-40~85 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 200 PB312 |
200 |
±200 |
3.3 |
1.65±1.32V |
±1.0 |
250 |
-40~85 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AS1V 200 H00 |
200 |
±200 |
5 |
2.5±2V |
±1.0 |
50 |
-40~105 |
20.5x10.5 mm |
|
Molex 5045-04A |
- Open loop current sensor using the Hall Effect.
- Output voltage is proportional to the supply voltage
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Supply voltage: +5V
- No insertion loss.
- Small size
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AS1V 200 H01 |
200 |
±600 |
5 |
2.5±0.625V |
±1.0 |
50 |
-40~105 |
20.5x10.5 mm |
|
Molex 5045-04A |
- Open loop current sensor using the Hall Effect.
- Output voltage is proportional to the supply voltage
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Supply voltage: +5V
- No insertion loss.
- Small size
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AS1V 200 H07 |
200 |
±200 |
5 |
2.5±0.625V |
±1.0 |
50 |
-40~105 |
20.5x10.5 mm |
|
RVVP 3 x 0.3mm x 0.3mm -600 |
Open loop current sensor using the Hall Effect Galvanic separation between primary and secondary Insulating plastic case recognized according to UL 94-V0 Supply voltage:+5V No insertion loss Small size Standards: IEC 60664-1:2020 IEC 61800-5-1:2022 IEC 62109-1:2010
more...
|
| AR1A 200 H00 |
200 |
±200 |
±12...15 |
±20mA |
±1.0 |
5 |
-40~85 |
Ø20.0 |
|
JK2EDG-5.08-4P |
- Open loop current sensor using the Hall effect.
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Nominal output current 20mA
- Good linearity
- High accuracy
- Very low offset drift over temperature.
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AR1A 200 H01 |
200 |
±200 |
±12...15 |
±100mA |
±1.0 |
5 |
-40~85 |
Ø20 |
|
JK2EDG-5.08-4P |
- Open loop current sensor using the Hall effect.
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Nominal output current 100mA
- Good linearity
- High accuracy
- Very low offset drift over temperature.
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AS1V 300 H00 |
300 |
±300 |
5 |
2.5±2V |
±1.0 |
50 |
-40~105 |
20.5 x 10.5 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall Effect.
- Output voltage is proportional to the supply voltage
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Supply voltage: +5V
- No insertion loss.
- Small size
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AS1V 300 H01 |
300 |
±900 |
5 |
2.5±0.625V |
±1.0 |
50 |
-40~105 |
20.5 x 10.5 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall Effect.
- Output voltage is proportional to the supply voltage
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Supply voltage: +5V
- No insertion loss.
- Small size
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AS1V 400 H00 |
400 |
±400 |
5 |
2.5±2V |
±1.0 |
50 |
-40~105 |
20.5 x 10.5 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall Effect.
- Output voltage is proportional to the supply voltage
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Supply voltage: +5V
- No insertion loss.
- Small size
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AS1V 400 H01 |
400 |
±900 |
5 |
2.5±0.625V |
±1.0 |
50 |
-40~105 |
20.5 x 10.5 mm |
|
MOLEX 5045-04A |
Open loop current sensor using the Hall Effect. - Output voltage is proportional to the supply voltage
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Supply voltage: +5V
- No insertion loss.
- Small size
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AS1V 500 H00 |
500 |
±500 |
5 |
2.5±2V |
±1.0 |
50 |
-40~105 |
20.5 x 10.5 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall Effect.
- Output voltage is proportional to the supply voltage
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Supply voltage: +5V
- No insertion loss.
- Small size
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AS1V 500 H01 |
500 |
±900 |
5 |
2.5±0.625V |
±1.0 |
50 |
-40~105 |
20.5 x 10.5 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall Effect.
- Output voltage is proportional to the supply voltage
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Supply voltage: +5V
- No insertion loss.
- Small size
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AS1V 600 H00 |
600 |
±600 |
5 |
2.5±2V |
±1.0 |
50 |
-40~105 |
20.5 x 10.5 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall Effect.
- Output voltage is proportional to the supply voltage
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Supply voltage: +5V
- No insertion loss.
- Small size
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AS1V 600 H01 |
600 |
±900 |
5 |
2.5±0.625V |
±1.0 |
50 |
-40~105 |
20.5 x 10.5 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall Effect.
- Output voltage is proportional to the supply voltage
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Supply voltage: +5V
- No insertion loss.
- Small size
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AS1V 700 H00 |
700 |
±700 |
5 |
2.5±2V |
±1.0 |
50 |
-40~105 |
20.5 x 10.5 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall Effect.
- Output voltage is proportional to the supply voltage
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Supply voltage: +5V
- No insertion loss.
- Small size
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AS1V 800 H00 |
800 |
±800 |
5 |
2.5±2V |
±1.0 |
50 |
-40~105 |
20.5 x 10.5 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall Effect.
- Output voltage is proportional to the supply voltage
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Supply voltage: +5V
- No insertion loss.
- Small size
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| VN2A 25 P01 |
5mA |
7mA |
24 |
±25mA |
±0.8 |
|
-40~85 |
NA |
+ |
|
- Closed loop (compensated) voltage sensor using the Hall Effect
- Insulating plastic case recognized according to UL94-V0
- Single power supply:+24V
- No insertion loss
- Small size
- High accuracy
- Very good linearity
- Very low offset drift over temperature
- High output frequency bandwidth
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| VN2A 25 P00 |
10mA |
±14mA |
±15 |
±25mA |
±0.6 |
|
-40~85 |
NA |
+ |
|
- Closed loop (compensated) voltage sensor using the Hall Effect.
- Insulating plastic case recognized according to UL94-V0.
- No insertion loss.
- Small size.
- High accuracy.
- Very good linearity.
- Very low offset drift over temperature.
- High output frequency bandwidth.
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| VN2A 25 P02 |
10mA |
±14mA |
24 |
±25mA |
±0.8 |
|
-40~85 |
NA |
+ |
|
- Closed loop (compensated) voltage sensor using the Hall Effect
- Insulating plastic case recognized according to UL94-V0
- No insertion loss
- Small size
- High accuracy
- Very good linearity
- Very low offset drift over temperature
- High output frequency bandwidth
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| VN2A 400 PB02 |
400V |
±400V |
±12 |
±5V |
±0.6 |
|
-40~85 |
NA |
|
3 Faston 6.3 x 0.8mm |
- Closed loop (compensated) voltage sensor using the Hall Effect
- Insulating plastic case recognized according to UL94-V0
- Small size
- High accuracy
- Supply voltage +12V
- Very good linearity
- Very low offset drift over temperature.
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| VN2A 800 PB00 |
800V |
±1400V |
±12...15 |
±25mA |
±0.6 |
|
-40~85 |
NA |
|
3 Faston 6.3 x 0.8mm |
- Closed loop (compensated) voltage sensor using the Hall Effect
- Insulating plastic case recognized according to UL94-V0
- Small size
- High accuracy
- Very good linearity
- Very low offset drift over temperature
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| VN2A 800 PB01 |
800V |
±1400V |
24 |
4V |
±0.6 |
|
-40~85 |
NA |
|
3 Faston 6.3 x 0.8mm |
- Closed loop (compensated) voltage sensor using the Hall Effect
- Insulating plastic case recognized according to UL94-V0
- Small size
- High accuracy
- Supply voltage +24V
- Very good linearity
- Very low offset drift over temperature.
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| VN2A 1100 PB00 |
1100V |
±1500V |
±12...15 |
±25mA |
±0.6 |
|
-40~85 |
NA |
|
3 Faston 6.3 x 0.8mm |
- Closed loop (compensated) voltage sensor using the Hall Effect
- Insulating plastic case recognized according to UL94-V0
- Small size
- High accuracy
- Very good linearity
- Very low offset drift over temperature
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| VN2A 1100 PB03 |
1100V |
±1500V |
±15 |
±4V |
±0.6 |
|
-40~85 |
NA |
|
3 Faston 6.3 x 0.8mm |
- Closed loop (compensated) voltage sensor using the Hall Effect
- Insulating plastic case recognized according to UL 94-V0
- Small size
- High accuracy
- Supply voltage:±15V
- Very good linearity
- Very low offset drift over temperature
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| VN2A 1100 PB20 |
1100V |
±1100V |
±12 |
±4V |
±0.6 |
|
-40~85 |
NA |
|
XH-3A |
- Closed loop (compensated) voltage sensor using the Hall Effect
- Insulating plastic case recognized according to UL94-V0
- Small size
- High accuracy
- Very good linearity
- Very low offset drift over temperature
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| VN3A 6400 M00 |
6400V |
±9600V |
±15...24 |
±80mA |
±1.0 |
|
-20~70 |
NA |
|
M5 threaded bolts |
- Closed loop (compensated) voltage sensor using the Hall Effect
- Insulating plastic case recognized according to UL 94-V0
- Mutual shielding between the primary and secondary
- Primary side resistance R1 integrated into the sensor
- High accuracy
- Good linearity
- Very low offset drift over temperature
- Resistant to strong external interference
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| HK1V 200 H00 |
200 |
±400 |
±12...15 |
±4V |
±1.0 |
10 |
-40~85 |
Ø40.5 |
|
15EDGVC-3.5-04P |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HK1V 400 H00 |
400 |
±800 |
±12...15 |
±4V |
±1.0 |
10 |
-40~85 |
Ø40.5 |
|
15EDGVC-3.5-04P |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HK1V 600 H00 |
600 |
±1200 |
±12...15 |
±4V |
±1.0 |
10 |
-40~85 |
Ø40.5 |
|
15EDGVC-3.5-04P |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HK1V 800 H00 |
800 |
±1600 |
±12...15 |
±4V |
±1.0 |
10 |
-40~85 |
Ø40.5 |
|
15EDGVC-3.5-04P |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HK1V 1000 H00 |
1000 |
±2000 |
±12...15 |
±4V |
±1.0 |
10 |
-40~85 |
Ø40.5 |
|
15EDGVC-3.5-04P |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HK1V 2000 H00 |
2000 |
±4000 |
±12...15 |
±4V |
±1.0 |
10 |
-40~85 |
Ø40.5 |
|
15EDGVC-3.5-04P |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HK1V 200 H01 |
200 |
±400 |
±12...15 |
±5V |
±1.0 |
10 |
-40~85 |
Ø40.5 |
|
15EDGVC-3.5-04P |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HK1V 400 H01 |
400 |
±800 |
±12...15 |
±5V |
±1.0 |
10 |
-40~85 |
Ø40.5 |
|
15EDGVC-3.5-04P |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HK1V 600 H01 |
600 |
±1200 |
±12...15 |
±5V |
±1.0 |
10 |
-40~85 |
Ø40.5 |
|
15EDGVC-3.5-04P |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HK1V 800 H01 |
800 |
±1600 |
±12...15 |
±5V |
±1.0 |
10 |
-40~85 |
Ø40.5 |
|
15EDGVC-3.5-04P |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HK1V 1000 H01 |
1000 |
±2000 |
±12...15 |
±5V |
±1.0 |
10 |
-40~85 |
Ø40.5 |
|
15EDGVC-3.5-04P |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HK1V 2000 H01 |
2000 |
±4000 |
±12...15 |
±5V |
±1.0 |
10 |
-40~85 |
Ø40.5 |
|
15EDGVC-3.5-04P |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 500 H05 |
500 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 500 H06 |
500 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 500 H08 |
500 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm + HC-VH-T |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 500 H09 |
500 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm - 700mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 500 H01 |
500 |
±1500 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
RVVP 4*0.3mm*0.3mm- 1500mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 500 H02 |
500 |
±1500 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS3V 500 H00 |
500 |
±1500 |
±15 |
±4V |
±1.0 |
25 |
-40~85 |
64 x 21 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS3V 500 H01 |
500 |
±1500 |
±15 |
±4V |
±1.0 |
25 |
-40~85 |
64 x 21 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 600 H02 |
600 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN3V 10 PB30 |
10 |
±25 |
3.3 |
1.65±1.15V |
±1.0 |
250 |
-40~105 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Supply voltage:+3.3V
- Small size.
- h=8.7mm
- Standards:
- IEC 60664-1:2020
- IEC 61800-5-1:2022
- IEC 62109-1:2010
more...
|
| HS1V 600 H09 |
600 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm - 700mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 600 H08 |
600 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm + HC-VH-T |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 600 H06 |
600 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 600 H05 |
600 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 600 H04 |
600 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
XH2.54-4P |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 600 H03 |
600 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm - 500mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 50 H02 |
50 |
±150 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 50 H06 |
50 |
±150 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 50 H08 |
50 |
±150 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm + HC-VH-T |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 50 H09 |
50 |
±150 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm - 700mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 100 H00 |
100 |
±300 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 100 H02 |
100 |
±300 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 100 H03 |
100 |
±300 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm - 500mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 100 H04 |
100 |
±300 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
XH2.54-4P |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 100 H06 |
100 |
±300 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 100 H08 |
100 |
±300 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm + HC-VH-T |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 100 H09 |
100 |
±300 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm - 700mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 200 H02 |
200 |
±600 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 200 H03 |
200 |
±600 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm - 500mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 200 H04 |
200 |
±600 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
XH2.54-4P |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 200 H06 |
200 |
±600 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 200 H08 |
200 |
±600 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm + HC-VH-T |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 200 H09 |
200 |
±600 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm - 700mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 200 H01 |
200 |
±600 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
RVVP 4*0.3mm*0.3mm- 1500mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 200 H02 |
200 |
±600 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 300 H02 |
300 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 300 H03 |
300 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm - 500mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 300 H04 |
300 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
XH2.54-4P |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 300 H06 |
300 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 300 H08 |
300 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm + HC-VH-T |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 400 H02 |
400 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 400 H03 |
400 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm - 500mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 400 H04 |
400 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
XH2.54-4P |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 400 H05 |
400 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 400 H06 |
400 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 400 H08 |
400 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm + HC-VH-T |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 400 H09 |
400 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm - 700mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 400 H00 |
400 |
±1200 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 400 H01 |
400 |
±1200 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
RVVP 4*0.3mm*0.3mm- 1500mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 400 H02 |
400 |
±1200 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 500 H00 |
500 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 500 H02 |
500 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 500 H03 |
500 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
RVV4*0.2mm*0.2mm - 500mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS1V 500 H04 |
500 |
±900 |
±12...15 |
±4V |
±1.0 |
50 |
-40~105 |
20.4x10.4 mm |
|
XH2.54-4P |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 600 H01 |
600 |
±1800 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
RVVP 4*0.3mm*0.3mm- 1500mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 600 H02 |
600 |
±1800 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS3V 600 H00 |
600 |
±1800 |
±15 |
±4V |
±1.0 |
25 |
-40~85 |
64 x 21 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS3V 600 H01 |
600 |
±1800 |
±15 |
±4V |
±1.0 |
25 |
-40~85 |
64 x 21 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 800 H00 |
800 |
±2400 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 800 H01 |
800 |
±2400 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
RVVP 4*0.3mm*0.3mm- 1500mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 800 H02 |
800 |
±2400 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS3V 800 H01 |
800 |
±2400 |
±15 |
±4V |
±1.0 |
25 |
-40~85 |
64 x 21 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 1000 H01 |
1000 |
±3000 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
RVVP 4*0.3mm*0.3mm- 1500mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 1000 H02 |
1000 |
±3000 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS3V 1000 H00 |
1000 |
±3000 |
±15 |
±4V |
±1.0 |
25 |
-40~85 |
64 x 21 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS3V 1000 H01 |
1000 |
±3000 |
±15 |
±4V |
±1.0 |
25 |
-40~85 |
64 x 21 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 1200 H00 |
1200 |
±2500 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 1200 H01 |
1200 |
±3000 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
RVVP 4*0.3mm*0.3mm- 1500mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 1200 H02 |
1200 |
±3000 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 1500 H01 |
1500 |
±3000 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
RVVP 4*0.3mm*0.3mm- 1500mm |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS2V 1500 H02 |
1500 |
±3000 |
±15 |
±4V |
±1.0 |
25 |
-40~105 |
40.5x32.5 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS3V 1500 H01 |
1500 |
±4500 |
±15 |
±4V |
±1.0 |
25 |
-40~85 |
64 x 21 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS3V 2000 H01 |
2000 |
±5500 |
±15 |
±4V |
±1.0 |
25 |
-40~85 |
64 x 21 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS3V 2500 H00 |
2500 |
±5500 |
±15 |
±4V |
±1.0 |
25 |
-40~85 |
64 x 21 mm |
|
MOLEX 5045-04A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS3V 2500 H01 |
2500 |
±5500 |
±15 |
±4V |
±1.0 |
25 |
-40~85 |
64 x 21 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| HS3V 3000 H01 |
3000 |
±5500 |
±15 |
±4V |
±1.0 |
25 |
-40~85 |
64 x 21 mm |
|
XH-4A |
- Open loop current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion losses
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CR1V 75 PB05 |
75 |
±180 |
5 |
2.5V |
±1.0 |
200 |
-40~105 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
| CR1V 6 PB02 |
6 |
±12 |
5 |
1.65±1.25V |
±0.4 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
| CR1V 6 PB03 |
6 |
±12 |
5 |
1.62±1.25V |
±0.7 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
| CR1V 6 PB04 |
6 |
±20 |
5 |
2.5±1.875V |
±0.8 |
200 |
-40~105 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
| CR1V 15 PB02 |
15 |
±30 |
5 |
1.65±1.25V |
±0.4 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
| CR1V 15 PB03 |
15 |
±30 |
5 |
1.62±1.25V |
±0.7 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
| CR1V 15 PB04 |
15 |
±51 |
5 |
2.5±1.875V |
±0.8 |
200 |
-40~105 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
| CR1V 25 PB02 |
25 |
±50 |
5 |
1.65±1.25V |
±0.4 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
| VN4A 1500 M15 |
1500V |
±2250V |
±15...24 |
50mA |
±1.0 |
14 |
-40~85 |
NA |
|
M5 thread screw |
- Closed loop (compensated) voltage sensor using the Hall Effect.
- Galvanic insulation between the primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Good linearity
- Very low offset drift over temperature
- Resistant to strong external interference
- Standards:
- IEC 60664-1:2020
- IEC 61800-5-1:2022
- IEC 62109-1:2010
- EN 50155:2017
more...
|
| CR1V 25 PB04 |
25 |
±85 |
5 |
2.5±1.875V |
±0.8 |
200 |
-40~105 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
| CR1V 50 PB03 |
50 |
±100 |
5 |
1.62±1.25V |
±0.7 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
| CR1V 50 PB04 |
50 |
±150 |
5 |
2.5±1.875V |
±0.8 |
200 |
-40~105 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
| CS3A 50 P00 |
50 |
±90 |
±12...15 |
±50...90mA |
±0.3 |
150 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CS3A 50 P21 |
50 |
±100 |
±12...15 |
±25...37.5mA |
±0.3 |
150 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CS3A 100 P21 |
100 |
±150 |
±12...15 |
±50...75mA |
±0.3 |
150 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CS3A 100 P51 |
100 |
±150 |
±12...15 |
±100...150mA |
±0.3 |
150 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CN1A 25 PB01 |
25 |
±36 |
±12 |
±25mA |
±0.5 |
150 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AR1A 50 H00 |
50 |
±50 |
±12...15 |
±20mA |
±1.0 |
5 |
-40~85 |
Ø20.0 |
|
JK2EDG-5.08-4P |
- Open loop current sensor using the Hall effect.
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Nominal output current 20mA
- Good linearity
- High accuracy
- Very low offset drift over temperature.
- Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AR1A 50 H01 |
50 |
±50 |
±12...15 |
±100mA |
±1.0 |
5 |
-40~85 |
Ø20 |
|
JK2EDG-5.08-4P |
- Open loop current sensor using the Hall effect.
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- Nominal output current 100mA
- Good linearity
- High accuracy
- Very low offset drift over temperature.
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| AN1V 300 PB501 |
300 |
±300 |
5 |
0.55-4.55V |
±1.0 |
250 |
-40~85 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| AN1V 300 PB502 |
300 |
±300 |
5 |
0.55-4.55V |
±1.0 |
250 |
-40~85 |
NA |
+ |
|
- Open loop current sensor using the Hall effect.
- ASIC Technology.
- Maintain output proportional to changes in the power supply(include offset and sensitivity).
- Galvanic separation between primary and secondary.
- Insulating plastic case recognized according to UL 94-V0.
- No insertion losses.
- Small size.
- Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CN2A 25 PB02 |
25 |
±55 |
±12...15 |
±25mA |
±0.5 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CN2A 40 PB02 |
40 |
±90 |
±12...15 |
±40mA |
±0.5 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CN2A 50 PB02 |
50 |
±90 |
±12...15 |
±50mA |
±0.5 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CR1A 50 H00 |
50 |
±70 |
±12...15 |
±50...100mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
MOLEX 5045-04A |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CR1A 100 H02 |
100 |
±200 |
±12...15 |
±50...100mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
HX39600-3Y |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CR1A 100 H04 |
100 |
±200 |
±12...15 |
±50...100mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
Molex9652048 3.96-A4A |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CR1A 200 H02 |
200 |
±400 |
±12...15 |
±100...200mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
HX39600-3Y |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CR1A 200 H04 |
200 |
±400 |
±12...15 |
±100...200mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
Molex9652048 3.96-A4A |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CR1A 300 H04 |
300 |
±500 |
±12...15 |
±150...250mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
Molex9652048 3.96-A4A |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CM1A 100 H01 |
100 |
±200 |
±12...15 |
±100...200mA |
±0.2 |
100 |
-40~85 |
Ø15.6 |
|
Molex 6410 |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CM1A 200 H02 |
200 |
±420 |
±12...15 |
±100...200mA |
±0.2 |
100 |
-40~85 |
Ø15.6 |
|
Molex Minifit 5566 |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CM4A 1000 H06 |
1000 |
±2700 |
±15...24 |
±200...540mA |
±0.3 |
150 |
-40~85 |
Ø38 |
|
Molex 6410 |
- Closed loop(compensated)current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
| CM5A 2000 H01 |
2000 |
±3850 |
±15...24 |
±400...770mA |
±0.3 |
150 |
-40~85 |
Ø57.5 |
|
5566-4A |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CM5A 2000 H21 |
2000 |
±4250 |
±15...24 |
±400...850mA |
±0.3 |
150 |
-40~85 |
Ø57.5 |
|
2EDGV-5.08-3P |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CS3A 20 P01 |
20 |
±30 |
±12 |
±50...90mA |
±0.5 |
150 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| CS3A 200 P21 |
200 |
±300 |
±12...15 |
±100...150mA |
±0.3 |
150 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
| VN4A 2000 M15 |
2000V |
±3000V |
±15...24 |
50mA |
±1.0 |
14 |
-40~85 |
NA |
|
M5 thread screw |
- Closed loop (compensated) voltage sensor using the Hall Effect.
- Galvanic insulation between the primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Good linearity
- Very low offset drift over temperature
- Resistant to strong external interference
- Standards:
- IEC 60664-1:2020
- IEC 61800-5-1:2022
- IEC 62109-1:2010
- EN 50155:2017
more...
|
| VN4A 500 M15 |
500V |
±750V |
±15...24 |
50mA |
±1.0 |
14 |
-40~85 |
NA |
|
M5 thread screw |
- Closed loop (compensated) voltage sensor using the Hall Effect.
- Galvanic insulation between the primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Good linearity
- Very low offset drift over temperature
- Resistant to strong external interference
- Standards:
- IEC 60664-1:2020
- IEC 61800-5-1:2022
- IEC 62109-1:2010
- EN 50155:2017
more...
|
| HK5V 1000 H20 |
±1000 |
±1500 |
±12...15 |
±4V |
±1.0 |
20 |
-25~85 |
16mm×64mm |
|
2EDG-4P-3.81 |
- Open loop sensor using the Hall Effect
- Galvanic insulation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Double Hall design
- Open installation
- Battery pack current detection
- Smart power grid
- Standards:
- IEC 60664-1:2020
- IEC 62109-1:2010
- IEC 61800-5-1:2022
more...
|
| HK5V 800 H20 |
±800 |
±1200 |
±12...15 |
±4V |
±1.0 |
20 |
-25~85 |
16mm×64mm |
|
2EDG-4P-3.81 |
- Open loop sensor using the Hall Effect
- Galvanic insulation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Double Hall design
- Open installation
- Battery pack current detection
- Smart power grid
- Standards:
- IEC 60664-1:2020
- IEC 62109-1:2010
- IEC 61800-5-1:2022
more...
|
| HK1A 200 H00 |
200 |
±240 |
12 |
4...20mA |
±1.0 |
DC |
-25~85 |
Ø41.3 |
|
2EDGV-3.81-4P |
- Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- No insertion loss
- Small size
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|