CR1V 6 PB00 |
6 |
±18 |
5 |
2.5±1.875V |
±0.7 |
100 |
-40~85 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CR1V 6 PB01 |
6 |
±20 |
5 |
2.5±1.875V |
±0.8 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CR1V 15 PB00 |
15 |
±45 |
5 |
2.5±1.875V |
±0.7 |
100 |
-40~85 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CR1V 15 PB01 |
15 |
±51 |
5 |
2.5±1.875V |
±0.8 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CN1A 25 PB00 |
25 |
±36 |
±15 |
±25mA |
±0.5 |
150 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CR1V 25 PB00 |
25 |
±75 |
5 |
2.5±1.875V |
±0.7 |
100 |
-40~85 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CR1V 25 PB01 |
25 |
±85 |
5 |
2.5±1.875V |
±0.8 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CN2A 40 PB01 |
40 |
±110 |
±12...15 |
±20mA |
±0.5 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:
- IEC 60664-1:2020 IEC 61800-5-1:2022 IEC 62109-1:2010
more...
|
CS3A 50 P01 |
50 |
±90 |
±12...15 |
±50...90mA |
±0.3 |
200 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CS3A 50 P51 |
50 |
±90 |
±12...15 |
±50...90mA |
±0.3 |
150 |
-20~75 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CN2A 50 PB01 |
50 |
±110 |
±12...15 |
±25mA |
±0.5 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CN2A 80 PB01 |
80 |
±160 |
±12...15 |
±40mA |
±0.5 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CN2A 100 PB01 |
100 |
±160 |
±12...15 |
±50mA |
±0.5 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CR1A 100 H00 |
100 |
±200 |
±12...15 |
±50...100mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
MOLEX 5045-04A |
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CR1A 100 H01 |
100 |
±200 |
±12...15 |
±50...100mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
JK126-500-3P |
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CS3A 100 P00 |
100 |
±150 |
±12...15 |
±100...150mA |
±0.3 |
150 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CS3A 100 P01 |
100 |
±160 |
±12...15 |
±100...160mA |
±0.3 |
200 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CS3A 125 P00 |
125 |
±200 |
±12...15 |
±125...200mA |
±0.3 |
150 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CR1A 200 H00 |
200 |
±400 |
±12...15 |
±100...200mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
MOLEX 5045-04A |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CR1A 200 H01 |
200 |
±400 |
±12...15 |
±100...200mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
JK126-500-3P |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CM1A 200 H00 |
200 |
±420 |
±12...15 |
±100...210mA |
±0.2 |
100 |
-40~85 |
Ø15.6 |
|
Molex 6410 |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CR1A 300 H00 |
300 |
±500 |
±12...15 |
±150...250mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
MOLEX 5045-04A |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CR1A 300 H01 |
300 |
±500 |
±12...15 |
±150...250mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
JK126-500-3P |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CR1A 300 H02 |
300 |
±500 |
±12...15 |
±150...250mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
HX39600-3Y |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CM2A 300 H00 |
300 |
±500 |
±12...20 |
±150...250mA |
±0.3 |
100 |
-40~85 |
Ø20 |
|
Molex 6410 |
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CR2A 400 H00 |
400 |
±600 |
±15...24 |
±100...150mA |
±0.5 |
100 |
-40~85 |
Ø35.0 |
|
JK126-500-3P |
- Closed loop(compensated)current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
CR2A 500 H00 |
500 |
±800 |
±15...24 |
±100...160mA |
±0.5 |
100 |
-40~85 |
Ø35.0 |
|
JK126-500-3P |
- Closed loop(compensated)current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
CM3A 500 H00 |
500 |
±800 |
±15...24 |
±100...160mA |
±0.5 |
100 |
-40~85 |
Ø30 |
|
Molex 6410 |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CM3A 500 H01 |
500 |
±800 |
±15...24 |
±100...160mA |
±0.5 |
100 |
-40~85 |
Ø30 |
|
JST B3P VH |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CM4A 1000 H00 |
1000 |
±2100 |
±15...24 |
±200...420mA |
±0.3 |
150 |
-40~85 |
Ø38 |
|
Molex 6410 |
- Closed loop(compensated)current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
CM4A 1000 H03 |
1200 |
±1800 |
±24 |
±300...450mA |
±0.4 |
150 |
-40~85 |
Ø38 |
|
JST B3P VH |
- Closed loop(compensated)current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
CM4A 1000 H05 |
1000 |
±2100 |
±15...24 |
±200...420mA |
±0.3 |
150 |
-40~85 |
Ø38 |
|
JST B3P VH |
- Closed loop(compensated)current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
CM6A 1000 B00 |
1000 |
±2000 |
±24 |
±200...400mA |
±0.4 |
150 |
-40~85 |
Primary copper busbar |
|
4×M5 threaded bolts |
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:EN50155: 2007, UL508:2013
more...
|
CM5A 2000 H20 |
2000 |
±4250 |
±15...24 |
±400...850mA |
±0.3 |
150 |
-40~85 |
Ø57.5 |
|
JST B3P VH |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CS1V 200 P00 |
200 |
±450 |
5 |
0.25...4.75V |
<1.1 |
>200 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CS1V 150 P00 |
150 |
270 |
5 |
0.25...4.75V |
<1 |
>200 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CS1V 100 P00 |
100 |
270 |
5 |
0.25...4.75V |
<1 |
>200 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CS1V 80 P00 |
80 |
270 |
5 |
0.25...4.75V |
<1 |
>200 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CR1V 6 PB02 |
6 |
±12 |
5 |
1.65±1.25V |
±0.4 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CR1V 6 PB03 |
6 |
±12 |
5 |
1.62±1.25V |
±0.7 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CR1V 6 PB04 |
6 |
±20 |
5 |
2.5±1.875V |
±0.8 |
200 |
-40~105 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CR1V 15 PB02 |
15 |
±30 |
5 |
1.65±1.25V |
±0.4 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CR1V 15 PB03 |
15 |
±30 |
5 |
1.62±1.25V |
±0.7 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CR1V 15 PB04 |
15 |
±51 |
5 |
2.5±1.875V |
±0.8 |
200 |
-40~105 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CR1V 25 PB02 |
25 |
±50 |
5 |
1.65±1.25V |
±0.4 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CR1V 25 PB03 |
25 |
±50 |
5 |
1.62±1.25V |
±0.7 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CR1V 25 PB04 |
25 |
±85 |
5 |
2.5±1.875V |
±0.8 |
200 |
-40~105 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CR1V 50 PB03 |
50 |
±100 |
5 |
1.62±1.25V |
±0.7 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CR1V 50 PB04 |
50 |
±150 |
5 |
2.5±1.875V |
±0.8 |
200 |
-40~105 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CR1V 75 PB05 |
75 |
±180 |
5 |
2.5V |
±1.0 |
200 |
-40~105 |
NA |
+ |
|
- Closed loop(compensated)current sensor using the Hall effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion losses
- Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010
more...
|
CN1A 25 PB01 |
25 |
±36 |
±12 |
±25mA |
±0.5 |
150 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CS3A 200 P21 |
200 |
±300 |
±12...15 |
±100...150mA |
±0.3 |
150 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CN2A 25 PB02 |
25 |
±55 |
±12...15 |
±25mA |
±0.5 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CN2A 40 PB02 |
40 |
±90 |
±12...15 |
±40mA |
±0.5 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CN2A 50 PB02 |
50 |
±90 |
±12...15 |
±50mA |
±0.5 |
200 |
-40~85 |
NA |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CR1A 50 H00 |
50 |
±70 |
±12...15 |
±50...100mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
MOLEX 5045-04A |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CR1A 100 H02 |
100 |
±200 |
±12...15 |
±50...100mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
HX39600-3Y |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CR1A 100 H04 |
100 |
±200 |
±12...15 |
±50...100mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
Molex9652048 3.96-A4A |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CR1A 200 H02 |
200 |
±400 |
±12...15 |
±100...200mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
HX39600-3Y |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CR1A 200 H04 |
200 |
±400 |
±12...15 |
±100...200mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
Molex9652048 3.96-A4A |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CR1A 300 H04 |
300 |
±500 |
±12...15 |
±150...250mA |
±0.5 |
200 |
-40~85 |
Ø23 |
|
Molex9652048 3.96-A4A |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CM1A 100 H01 |
100 |
±200 |
±12...15 |
±100...200mA |
±0.2 |
100 |
-40~85 |
Ø15.6 |
|
Molex 6410 |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CM1A 200 H02 |
200 |
±420 |
±12...15 |
±100...200mA |
±0.2 |
100 |
-40~85 |
Ø15.6 |
|
Molex Minifit 5566 |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CM4A 1000 H06 |
1000 |
±2700 |
±15...24 |
±200...540mA |
±0.3 |
150 |
-40~85 |
Ø38 |
|
Molex 6410 |
- Closed loop(compensated)current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010
more...
|
CM5A 2000 H01 |
2000 |
±3850 |
±15...24 |
±400...770mA |
±0.3 |
150 |
-40~85 |
Ø57.5 |
|
5566-4A |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CM5A 2000 H21 |
2000 |
±4250 |
±15...24 |
±400...850mA |
±0.3 |
150 |
-40~85 |
Ø57.5 |
|
2EDGV-5.08-3P |
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CS3A 20 P01 |
20 |
±30 |
±12 |
±50...90mA |
±0.5 |
150 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CS3A 50 P00 |
50 |
±90 |
±12...15 |
±50...90mA |
±0.3 |
150 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CS3A 50 P21 |
50 |
±100 |
±12...15 |
±25...37.5mA |
±0.3 |
150 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CS3A 100 P21 |
100 |
±150 |
±12...15 |
±50...75mA |
±0.3 |
150 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CS3A 100 P51 |
100 |
±150 |
±12...15 |
±100...150mA |
±0.3 |
150 |
-40~85 |
13.5 x 10 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CS1V 100 PB00 |
100 |
270 |
5 |
0.25...4.75V |
<0.95 |
>200 |
-40~85 |
4 x φ5.2 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CS1V 150 PB00 |
150 |
270 |
5 |
0.25...4.75V |
<0.95 |
>200 |
-40~85 |
4 x φ5.2 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|
CS1V 200 PB00 |
200 |
±450 |
5 |
0.25...4.75V |
<1.1 |
>200 |
-40~85 |
4 x φ5.2 mm |
+ |
|
- Closed loop (compensated) current sensor using the Hall Effect
- Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- Very good linearity
- High accuracy
- Very low offset drift over temperature
- No insertion loss
- Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010
more...
|