PRODUCTS

Find Products

Featured Product

Product No Primary nominal RMS current(A) Measuring range(A) Supply voltage (V) Secondary output Accuracy(%) Output bandwidth Operating Temp.(°C) Copper busbar(mm) PCB Others
CR1V 6 PB00
CR1V 6 PB00

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1V 6 PB01
CR1V 6 PB01

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1V 15 PB00
CR1V 15 PB00

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1V 15 PB01
CR1V 15 PB01

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CN1A 25 PB00
CN1A 25 PB00

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1V 25 PB00
CR1V 25 PB00

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1V 25 PB01
CR1V 25 PB01

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CN2A 40 PB01
CN2A 40 PB01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:
  • IEC 60664-1:2020  IEC 61800-5-1:2022  IEC 62109-1:2010

more...
CS3A 50 P01
CS3A 50 P01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CS3A 50 P51
CS3A 50 P51

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CN2A 50 PB01
CN2A 50 PB01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CN2A 80 PB01
CN2A 80 PB01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CN2A 100 PB01
CN2A 100 PB01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1A 100 H00
CR1A 100 H00

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1A 100 H01
CR1A 100 H01

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CS3A 100 P00
CS3A 100 P00

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CS3A 100 P01
CS3A 100 P01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CS3A 125 P00
CS3A 125 P00

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1A 200 H00
CR1A 200 H00

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1A 200 H01
CR1A 200 H01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CM1A 200 H00
CM1A 200 H00

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1A 300 H00
CR1A 300 H00

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1A 300 H01
CR1A 300 H01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1A 300 H02
CR1A 300 H02

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CM2A 300 H00
CM2A 300 H00

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR2A 400 H00
CR2A 400 H00

  • Closed loop(compensated)current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
CR2A 500 H00
CR2A 500 H00

  • Closed loop(compensated)current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
CM3A 500 H00
CM3A 500 H00

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CM3A 500 H01
CM3A 500 H01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CM4A 1000 H00
CM4A 1000 H00

  • Closed loop(compensated)current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
CM4A 1000 H03
CM4A 1000 H03

  • Closed loop(compensated)current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
CM4A 1000 H05
CM4A 1000 H05

  • Closed loop(compensated)current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
CM5A 2000 H20
CM5A 2000 H20

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 50 H00
HS1V 50 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 50 H05
HS1V 50 H05

  • Open loop sensor using the Hall Effect
  • Output voltage is proportional to supply voltage
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HR1V 50 H01
HR1V 50 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
HS1V 100 H05
HS1V 100 H05

  • Open loop sensor using the Hall Effect
  • Output voltage is proportional to supply voltage
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HR1V 100 H01
HR1V 100 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
HS1V 200 H00
HS1V 200 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 200 H05
HS1V 200 H05

  • Open loop sensor using the Hall Effect
  • Output voltage is proportional to supply voltage
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 200 H00
HS2V 200 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HR1V 200 H01
HR1V 200 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
HS1V 300 H00
HS1V 300 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 50 H04
HS1V 50 H04

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 300 H05
HS1V 300 H05

  • Open loop sensor using the Hall Effect
  • Output voltage is proportional to supply voltage
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HR1V 300 H01
HR1V 300 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
HS1V 400 H00
HS1V 400 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HR1V 400 H01
HR1V 400 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
HS2V 500 H00
HS2V 500 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL94-V0
  • No insertion loss
  • Small size
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
HR1V 500 H01
HR1V 500 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
HS1V 600 H00
HS1V 600 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
HS2V 600 H00
HS2V 600 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL94-V0
  • No insertion loss
  • Small size
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
HS3V 800 H00
HS3V 800 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
HS2V 1000 H00
HS2V 1000 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL94-V0
  • No insertion loss
  • Small size
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
HS1V 50 H03
HS1V 50 H03

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 1500 H00
HS2V 1500 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL94-V0
  • No insertion loss
  • Small size
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
HS3V 1500 H00
HS3V 1500 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
HS3V 2000 H00
HS3V 2000 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
HS3V 3000 H00
HS3V 3000 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
AN1V 50 PB20
AN1V 50 PB20

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
AN1V 50 PB21
AN1V 50 PB21

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
AN1V 50 PB22
AN1V 50 PB22

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 50 PB23
AN1V 50 PB23

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 50 PB30
AN1V 50 PB30

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 50 PB31
AN1V 50 PB31

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 100 PB20
AN1V 100 PB20

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 100 PB21
AN1V 100 PB21

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 100 PB22
AN1V 100 PB22

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 100 PB23
AN1V 100 PB23

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 100 PB30
AN1V 100 PB30

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 100 PB31
AN1V 100 PB31

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 150 PB20
AN1V 150 PB20

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 150 PB21
AN1V 150 PB21

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 150 PB22
AN1V 150 PB22

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 150 PB23
AN1V 150 PB23

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 150 PB30
AN1V 150 PB30

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 150 PB31
AN1V 150 PB31

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 200 PB20
AN1V 200 PB20

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 200 PB21
AN1V 200 PB21

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 200 PB22
AN1V 200 PB22

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 200 PB23
AN1V 200 PB23

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 200 PB30
AN1V 200 PB30

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 200 PB31
AN1V 200 PB31

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 200 H00
HK1V 200 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 400 H00
HK1V 400 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 600 H00
HK1V 600 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 800 H00
HK1V 800 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 1000 H00
HK1V 1000 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 2000 H00
HK1V 2000 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 200 H01
HK1V 200 H01

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 400 H01
HK1V 400 H01

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 600 H01
HK1V 600 H01

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 800 H01
HK1V 800 H01

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 1000 H01
HK1V 1000 H01

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 2000 H01
HK1V 2000 H01

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 500 H05
HS1V 500 H05

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 500 H06
HS1V 500 H06

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 500 H08
HS1V 500 H08

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 500 H09
HS1V 500 H09

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 500 H01
HS2V 500 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 500 H02
HS2V 500 H02

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS3V 500 H00
HS3V 500 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS3V 500 H01
HS3V 500 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 600 H02
HS1V 600 H02

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN3V 10 PB30
AN3V 10 PB30

  • Open loop current sensor using the Hall effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Supply voltage:+5V
  • Small size.
  • h=8.7mm
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
HS1V 600 H08
HS1V 600 H08

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 600 H06
HS1V 600 H06

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 600 H05
HS1V 600 H05

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 600 H04
HS1V 600 H04

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 600 H03
HS1V 600 H03

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 50 H02
HS1V 50 H02

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 50 H06
HS1V 50 H06

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 50 H08
HS1V 50 H08

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 50 H09
HS1V 50 H09

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 100 H00
HS1V 100 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 100 H02
HS1V 100 H02

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 100 H03
HS1V 100 H03

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 100 H04
HS1V 100 H04

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 100 H06
HS1V 100 H06

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 100 H08
HS1V 100 H08

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 100 H09
HS1V 100 H09

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 200 H02
HS1V 200 H02

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 200 H03
HS1V 200 H03

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 200 H04
HS1V 200 H04

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 200 H06
HS1V 200 H06

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 200 H08
HS1V 200 H08

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 200 H09
HS1V 200 H09

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 200 H01
HS2V 200 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 200 H02
HS2V 200 H02

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 300 H02
HS1V 300 H02

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 300 H03
HS1V 300 H03

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 300 H04
HS1V 300 H04

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 300 H06
HS1V 300 H06

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 300 H08
HS1V 300 H08

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 300 H09
HS1V 300 H09

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 400 H02
HS1V 400 H02

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 400 H03
HS1V 400 H03

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 400 H04
HS1V 400 H04

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 400 H05
HS1V 400 H05

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 400 H06
HS1V 400 H06

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 400 H08
HS1V 400 H08

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 400 H09
HS1V 400 H09

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 400 H00
HS2V 400 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 400 H01
HS2V 400 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 400 H02
HS2V 400 H02

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 500 H00
HS1V 500 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 500 H02
HS1V 500 H02

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 500 H03
HS1V 500 H03

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 500 H04
HS1V 500 H04

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 600 H09
HS1V 600 H09

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 600 H01
HS2V 600 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 600 H02
HS2V 600 H02

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS3V 600 H00
HS3V 600 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS3V 600 H01
HS3V 600 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 800 H00
HS2V 800 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 800 H01
HS2V 800 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 800 H02
HS2V 800 H02

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS3V 800 H01
HS3V 800 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 1000 H01
HS2V 1000 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 1000 H02
HS2V 1000 H02

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS3V 1000 H00
HS3V 1000 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS3V 1000 H01
HS3V 1000 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 1200 H00
HS2V 1200 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 1200 H01
HS2V 1200 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 1200 H02
HS2V 1200 H02

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 1500 H01
HS2V 1500 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 1500 H02
HS2V 1500 H02

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS3V 1500 H01
HS3V 1500 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS3V 2000 H01
HS3V 2000 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS3V 2500 H00
HS3V 2500 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS3V 2500 H01
HS3V 2500 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS3V 3000 H01
HS3V 3000 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1V 75 PB05
CR1V 75 PB05

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1V 6 PB02
CR1V 6 PB02

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1V 6 PB03
CR1V 6 PB03

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1V 6 PB04
CR1V 6 PB04

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1V 15 PB02
CR1V 15 PB02

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1V 15 PB03
CR1V 15 PB03

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1V 15 PB04
CR1V 15 PB04

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1V 25 PB02
CR1V 25 PB02

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1V 25 PB03
CR1V 25 PB03

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1V 25 PB04
CR1V 25 PB04

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1V 50 PB03
CR1V 50 PB03

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1V 50 PB04
CR1V 50 PB04

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CS3A 50 P00
CS3A 50 P00

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CS3A 50 P21
CS3A 50 P21

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CS3A 100 P21
CS3A 100 P21

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CS3A 100 P51
CS3A 100 P51

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CN1A 25 PB01
CN1A 25 PB01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 300 PB22
AN1V 300 PB22

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 300 PB23
AN1V 300 PB23

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CN2A 25 PB02
CN2A 25 PB02

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CN2A 40 PB02
CN2A 40 PB02

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CN2A 50 PB02
CN2A 50 PB02

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1A 50 H00
CR1A 50 H00

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1A 100 H02
CR1A 100 H02

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1A 100 H04
CR1A 100 H04

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1A 200 H02
CR1A 200 H02

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1A 200 H04
CR1A 200 H04

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1A 300 H04
CR1A 300 H04

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CM1A 100 H01
CM1A 100 H01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CM1A 200 H02
CM1A 200 H02

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CM4A 1000 H06
CM4A 1000 H06

  • Closed loop(compensated)current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
CM5A 2000 H01
CM5A 2000 H01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CM5A 2000 H21
CM5A 2000 H21

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CS3A 20 P01
CS3A 20 P01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CS3A 200 P21
CS3A 200 P21

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...