Industrial Power Supply

Typical applications:
New energy vehicles, charging piles, air conditioners, refrigerators,Intelligent electric,
leakage protector...

New energy vehicles (NEVs) and home appliances are two distinct but increasingly interconnected areas, especially as both sectors move towards more sustainable and technologically advanced solutions. Here’s a detailed look at each and their potential applications:

New Energy Vehicles (NEVs)

Definition:
New energy vehicles (NEVs) include electric vehicles (EVs), plug-in hybrid electric vehicles (PHEVs), and fuel cell electric vehicles (FCEVs). These vehicles are designed to reduce dependence on fossil fuels and lower greenhouse gas emissions.

Applications:
1. Personal Transportation:
   - Electric Cars: Fully electric cars like the Tesla Model 3, Nissan Leaf, and Chevrolet Bolt.
   - Plug-in Hybrid Electric Vehicles (PHEVs): Vehicles that can run on both electricity and gasoline, such as the Toyota Prius Prime and BMW i3 REx.

2. Public Transportation:
   - Electric Buses: Many cities are transitioning to electric buses for public transit to reduce pollution and operating costs.
   - Electric Taxis and Ride-Sharing Services: Companies like Uber and Lyft are promoting the use of electric vehicles in their fleets.

3. Commercial and Industrial Use:
   - Electric Delivery Vans and Trucks: Companies like Amazon and UPS are investing in electric delivery vehicles to reduce their carbon footprint.
   - Construction and Agricultural Equipment: Electric versions of construction equipment and agricultural machinery are being developed to reduce emissions in these industries.

4. Infrastructure:
   - Charging Stations: The expansion of charging infrastructure is crucial for the widespread adoption of NEVs.
   - Smart Grid Integration: NEVs can be integrated with smart grids to manage electricity demand and supply, and even provide grid services like vehicle-to-grid (V2G) technology.

5. Energy Storage:
   - Vehicle-to-Grid (V2G): Electric vehicle batteries can store excess energy during off-peak hours and feed it back into the grid during peak demand.
   - Second-Life Batteries: Used EV batteries can be repurposed for stationary energy storage systems, providing backup power or storing renewable energy.

Home Appliances

Definition:
Home appliances are electrical and mechanical devices used in households for various purposes, including cooking, cleaning, and entertainment. Modern home appliances are becoming smarter and more energy-efficient.

Applications:
1. Kitchen Appliances:
   - Refrigerators and Freezers: Energy-efficient models with smart features like temperature monitoring and automatic defrosting.
   - Ovens and Cooktops: Induction cooktops and convection ovens that are faster and more energy-efficient than traditional models.
   - Dishwashers: Water and energy-efficient dishwashers with smart sensors to optimize water and detergent usage.

2. Laundry Appliances:
   - Washing Machines and Dryers: High-efficiency washing machines and dryers with moisture sensors to reduce energy and water consumption.
   - Clothes Irons and Steamers: Advanced irons and steamers with precise temperature control and energy-saving features.

3. Cleaning Appliances:
   - Vacuum Cleaners: Robotic and cordless vacuum cleaners with powerful suction and long battery life.
   - Robotic Mops and Floor Cleaners: Smart mopping robots that can clean floors without human intervention.

4. Heating and Cooling:
   - Air Conditioners and Heaters: Energy-efficient air conditioners and heaters with smart thermostats that can be controlled via mobile apps.
   - Heat Pumps: Efficient heat pumps that can both cool and heat homes, reducing energy consumption.

5. Entertainment and Connectivity:
   - Smart TVs and Streaming Devices: High-resolution smart TVs with built-in streaming services and voice control.
   - Home Audio Systems: Wireless and multi-room audio systems that can be controlled via smartphones and smart speakers.

6. Security and Monitoring:
   - Smart Security Cameras: Wi-Fi-enabled security cameras with motion detection and remote viewing capabilities.
   - Smart Door Locks and Sensors: Smart locks and sensors that can be monitored and controlled via mobile apps.

Interconnected Applications

1. Energy Management:
   - Smart Home Systems: Integrating NEVs and home appliances into a smart home system can optimize energy use. For example, charging the vehicle during off-peak hours when electricity rates are lower.
   - Energy Storage and Backup: Using NEV batteries as a backup power source for the home during power outages.

2. Sustainability:
   - Renewable Energy Integration: Both NEVs and home appliances can be powered by renewable energy sources like solar panels, reducing overall carbon footprint.
   - Recycling and Repurposing: Recycling and repurposing materials from both NEVs and home appliances to reduce waste and promote a circular economy.

3. User Experience:
   - Seamless Integration: Smart home systems can integrate NEVs and home appliances, allowing users to control and monitor everything from a single app.
   - Predictive Maintenance: AI and machine learning can predict maintenance needs for both NEVs and home appliances, reducing downtime and extending product lifespan.

By leveraging these applications, both new energy vehicles and home appliances can contribute to a more sustainable and efficient future, enhancing the quality of life while reducing environmental impact.

Featured Product

Product No Primary nominal RMS current(A) Measuring range(A) Supply voltage (V) Secondary output Accuracy(%) Output bandwidth Operating Temp.(°C) Copper busbar(mm) PCB Others
CR1V 6 PB00

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1V 6 PB01

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1V 15 PB00

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1V 15 PB01

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CN1A 25 PB00

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1V 25 PB00

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1V 25 PB01

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CN2A 40 PB01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:
  • IEC 60664-1:2020  IEC 61800-5-1:2022  IEC 62109-1:2010

more...
CS3A 50 P01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CS3A 50 P51

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CN2A 50 PB01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CN2A 80 PB01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CN2A 100 PB01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1A 100 H00

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR1A 100 H01

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CS3A 100 P00

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CS3A 100 P01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CS3A 125 P00

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1A 200 H00

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1A 200 H01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CM1A 200 H00

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1A 300 H00

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1A 300 H01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CR1A 300 H02

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CM2A 300 H00

  • Closed loop(compensated)current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion losses
  • Standards:IEC 60664-1: 2020, IEC 61800-5-1: 2022, IEC 62109-1: 2010

more...
CR2A 400 H00

  • Closed loop(compensated)current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
CR2A 500 H00

  • Closed loop(compensated)current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
CM3A 500 H00

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CM3A 500 H01

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
CM4A 1000 H00

  • Closed loop(compensated)current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
CM4A 1000 H03

  • Closed loop(compensated)current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
CM4A 1000 H05

  • Closed loop(compensated)current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
CM5A 2000 H20

  • Closed loop (compensated) current sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very good linearity
  • High accuracy
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 50 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 50 H05

  • Open loop sensor using the Hall Effect
  • Output voltage is proportional to supply voltage
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HR1V 50 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
HS1V 100 H05

  • Open loop sensor using the Hall Effect
  • Output voltage is proportional to supply voltage
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HR1V 100 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
HR1M 100 H00

  • True rms output 4-20mA
  • Primary hole:Φ35mm
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 61010-1: 2000,UL 508: 2010

more...
HS1V 200 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 200 H05

  • Open loop sensor using the Hall Effect
  • Output voltage is proportional to supply voltage
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS2V 200 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HR1V 200 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
HR1M 200 H00

  • HR1M
  • True rms output 4-20mA
  • Primary hole:Φ35mm
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 61010-1: 2000,UL 508: 2010

more...
HS1V 300 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HS1V 300 H05

  • Open loop sensor using the Hall Effect
  • Output voltage is proportional to supply voltage
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HR1V 300 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
HR1M 300 H00

  • True rms output 4-20mA
  • Primary hole:Φ35mm
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:IEC 61010-1: 2000,UL 508: 2010

more...
HS1V 400 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HR1V 400 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
HR1M 400 H00

  • True rms output 4-20mA
  • Primary hole:Φ35mm
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:
  • IEC 61010-1: 2000
  • UL 508: 2010

more...
HS2V 500 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL94-V0
  • No insertion loss
  • Small size
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
HR1V 500 H01

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
HR1M 500 H00

  • True rms output 4-20mA
  • Primary hole:Φ35mm
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • Very low offset drift over temperature
  • No insertion loss
  • Standards:
  • IEC 61010-1: 2000
  • UL 508: 2010

more...
HS1V 600 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
HS2V 600 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL94-V0
  • No insertion loss
  • Small size
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
HS3V 800 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
HS2V 1000 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL94-V0
  • No insertion loss
  • Small size
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
HS2V 1500 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL94-V0
  • No insertion loss
  • Small size
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
HS3V 1500 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
HS3V 2000 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
HS3V 3000 H00

  • Open loop current sensor using the Hall effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion losses
  • Small size
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
AN5V 5 PB00

  • Open loop current sensor using the Hall Effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion loss.
  • Small size.
  • Standards:
  • EN50178: 1997
  • IEC 61010-1: 2000
  • UL 508: 2010

more...
AN5V 10 PB00

  • Open loop current sensor using the Hall Effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion loss.
  • Small size.
  • Standards:
  • EN50178: 1997
  • IEC 61010-1: 2000
  • UL 508: 2010

more...
AN3V 10 PB50

  • Open loop current sensor using the Hall effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Supply voltage:+5V
  • Small size.
  • h=8.7mm
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
AN5V 15 PB00

  • Open loop current sensor using the Hall Effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion loss.
  • Small size.
  • Standards:
  • EN50178: 1997
  • IEC 61010-1: 2000
  • UL 508: 2010

more...
AN3V 16 PB50

  • Open loop current sensor using the Hall effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Supply voltage:+5V
  • Small size.
  • h=8.7mm
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
AN5V 20 PB00

  • Open loop current sensor using the Hall Effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion loss.
  • Small size.
  • Standards:
  • EN50178: 1997
  • IEC 61010-1: 2000
  • UL 508: 2010

more...
AN3V 20 PB50

  • Open loop current sensor using the Hall effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Supply voltage:+5V
  • Small size.
  • h=8.7mm
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
AN5V 25 PB00

  • Open loop current sensor using the Hall Effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion loss.
  • Small size.
  • Standards:
  • EN50178: 1997
  • IEC 61010-1: 2000
  • UL 508: 2010

more...
AS1V 30 H05

  • Open loop current sensor using the Hall Effect.
  • Output voltage is proportional to the supply voltage
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Supply voltage: +5V
  • No insertion loss.
  • Small size
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AN3V 32 PB50

  • Open loop current sensor using the Hall effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Supply voltage:+5V
  • Small size.
  • h=8.7mm
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
AN3V 40 PB50

  • Open loop current sensor using the Hall effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Supply voltage:+5V
  • Small size.
  • h=8.7mm
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
AN5V 50 PB00

  • Open loop current sensor using the Hall Effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion loss.
  • Small size.
  • Standards:
  • EN50178: 1997
  • IEC 61010-1: 2000
  • UL 508: 2010

more...
AN1V 50 PB20

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
AN1V 50 PB21

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
AN1V 50 PB22

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 50 PB23

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 50 PB30

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 50 PB31

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN3V 50 PB30

  • Open loop current sensor using the Hall effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Supply voltage:+3.3V
  • Small size.
  • h=8.7mm
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
AN3V 50 PB50

  • Open loop current sensor using the Hall effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Supply voltage:+5V
  • Small size.
  • h=8.7mm
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
AS1V 50 H00

  • Open loop current sensor using the Hall Effect.
  • Output voltage is proportional to the supply voltage
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Supply voltage: +5V
  • No insertion loss.
  • Small size
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AS1V 50 H01

  • Open loop current sensor using the Hall Effect.
  • Output voltage is proportional to the supply voltage
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Supply voltage: +5V
  • No insertion loss.
  • Small size
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AN3V 80 PB50

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 100 PB20

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 100 PB21

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 100 PB22

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 100 PB23

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 100 PB30

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 100 PB31

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN3V 100 PB50

  • Open loop current sensor using the Hall effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Supply voltage:+5V
  • Small size.
  • h=8.7mm
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
AS1V 100 H00

  • Open loop current sensor using the Hall Effect.
  • Output voltage is proportional to the supply voltage
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Supply voltage: +5V
  • No insertion loss.
  • Small size
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AS1V 100 H01

  • Open loop current sensor using the Hall Effect.
  • Output voltage is proportional to the supply voltage
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Supply voltage: +5V
  • No insertion loss.
  • Small size
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AS1V 100 H07

  • Open loop current sensor using the Hall Effect.
  • Output voltage is proportional to the supply voltage
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Supply voltage: +5V
  • No insertion loss.
  • Small size
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AR1A 100 H00

  • Open loop current sensor using the Hall effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Nominal output current 20mA
  • Good linearity
  • High accuracy
  • Very low offset drift over temperature.
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AR1A 100 H01

  • Open loop current sensor using the Hall effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Nominal output current 100mA
  • Good linearity
  • High accuracy
  • Very low offset drift over temperature.
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AN3V 120 PB50

  • Open loop current sensor using the Hall effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Supply voltage:+5V
  • Small size.
  • h=8.7mm
  • Standards:
  • IEC 60664-1:2020
  • IEC 61800-5-1:2022
  • IEC 62109-1:2010

more...
AN1V 150 PB20

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 150 PB21

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 150 PB22

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 150 PB23

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 150 PB30

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 150 PB31

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 200 PB20

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 200 PB21

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 200 PB22

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 200 PB23

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 200 PB30

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AN1V 200 PB31

  • Open loop current sensor using the Hall effect.
  • ASIC Technology.
  • Maintain output proportional to changes in the power supply(include offset and sensitivity).
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • No insertion losses.
  • Small size.
  • Standards: IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
AS1V 200 H00

  • Open loop current sensor using the Hall Effect.
  • Output voltage is proportional to the supply voltage
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Supply voltage: +5V
  • No insertion loss.
  • Small size
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AS1V 200 H01

  • Open loop current sensor using the Hall Effect.
  • Output voltage is proportional to the supply voltage
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Supply voltage: +5V
  • No insertion loss.
  • Small size
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AS1V 200 H07

  • Open loop current sensor using the Hall Effect.
  • Output voltage is proportional to the supply voltage
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Supply voltage: +5V
  • No insertion loss.
  • Small size
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AR1A 200 H00

  • Open loop current sensor using the Hall effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Nominal output current 20mA
  • Good linearity
  • High accuracy
  • Very low offset drift over temperature.
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AR1A 200 H01

  • Open loop current sensor using the Hall effect.
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Nominal output current 100mA
  • Good linearity
  • High accuracy
  • Very low offset drift over temperature.
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AS1V 300 H00

  • Open loop current sensor using the Hall Effect.
  • Output voltage is proportional to the supply voltage
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Supply voltage: +5V
  • No insertion loss.
  • Small size
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AS1V 300 H01

  • Open loop current sensor using the Hall Effect.
  • Output voltage is proportional to the supply voltage
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Supply voltage: +5V
  • No insertion loss.
  • Small size
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AS1V 400 H00

  • Open loop current sensor using the Hall Effect.
  • Output voltage is proportional to the supply voltage
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Supply voltage: +5V
  • No insertion loss.
  • Small size
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AS1V 400 H01

Open loop current sensor using the Hall Effect.

  • Output voltage is proportional to the supply voltage
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Supply voltage: +5V
  • No insertion loss.
  • Small size
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AS1V 500 H00

  • Open loop current sensor using the Hall Effect.
  • Output voltage is proportional to the supply voltage
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Supply voltage: +5V
  • No insertion loss.
  • Small size
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AS1V 500 H01

  • Open loop current sensor using the Hall Effect.
  • Output voltage is proportional to the supply voltage
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Supply voltage: +5V
  • No insertion loss.
  • Small size
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AS1V 600 H00

  • Open loop current sensor using the Hall Effect.
  • Output voltage is proportional to the supply voltage
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Supply voltage: +5V
  • No insertion loss.
  • Small size
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AS1V 600 H01

  • Open loop current sensor using the Hall Effect.
  • Output voltage is proportional to the supply voltage
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Supply voltage: +5V
  • No insertion loss.
  • Small size
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AS1V 700 H00

  • Open loop current sensor using the Hall Effect.
  • Output voltage is proportional to the supply voltage
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Supply voltage: +5V
  • No insertion loss.
  • Small size
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
AS1V 800 H00

  • Open loop current sensor using the Hall Effect.
  • Output voltage is proportional to the supply voltage
  • Galvanic separation between primary and secondary.
  • Insulating plastic case recognized according to UL 94-V0.
  • Supply voltage: +5V
  • No insertion loss.
  • Small size
  • Standards: EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
VN2A 25 P01

  • Closed loop (compensated) voltage sensor using the Hall Effect
  • Insulating plastic case recognized according to UL94-V0
  • Single power supply:+24V
  • No insertion loss
  • Small size
  • High accuracy
  • Very good linearity
  • Very low offset drift over temperature
  • High output frequency bandwidth
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
VN2A 25 P00

  • Closed loop (compensated) voltage sensor using the Hall Effect.
  • Insulating plastic case recognized according to UL94-V0.
  • No insertion loss.
  • Small size.
  • High accuracy.
  • Very good linearity.
  • Very low offset drift over temperature.
  • High output frequency bandwidth.
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
VN2A 25 P02

  • Closed loop (compensated) voltage sensor using the Hall Effect
  • Insulating plastic case recognized according to UL94-V0
  • No insertion loss
  • Small size
  • High accuracy
  • Very good linearity
  • Very low offset drift over temperature
  • High output frequency bandwidth
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
VN2A 400 PB02

  • Closed loop (compensated) voltage sensor using the Hall Effect
  • Insulating plastic case recognized according to UL94-V0
  • Small size
  • High accuracy
  • Supply voltage +12V
  • Very good linearity
  • Very low offset drift over temperature.
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
VN2A 800 PB00

  • Closed loop (compensated) voltage sensor using the Hall Effect
  • Insulating plastic case recognized according to UL94-V0
  • Small size
  • High accuracy
  • Very good linearity
  • Very low offset drift over temperature
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
VN2A 800 PB01

  • Closed loop (compensated) voltage sensor using the Hall Effect
  • Insulating plastic case recognized according to UL94-V0
  • Small size
  • High accuracy
  • Supply voltage +24V
  • Very good linearity
  • Very low offset drift over temperature.
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
VN2A 1100 PB00

  • Closed loop (compensated) voltage sensor using the Hall Effect
  • Insulating plastic case recognized according to UL94-V0
  • Small size
  • High accuracy
  • Very good linearity
  • Very low offset drift over temperature
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
VN2A 1100 PB03

  • Closed loop (compensated) voltage sensor using the Hall Effect
  • Insulating plastic case recognized according to UL 94-V0
  • Small size
  • High accuracy
  • Supply voltage:±15V
  • Very good linearity
  • Very low offset drift over temperature
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
VN2A 1100 PB20

  • Closed loop (compensated) voltage sensor using the Hall Effect
  • Insulating plastic case recognized according to UL94-V0
  • Small size
  • High accuracy
  • Very good linearity
  • Very low offset drift over temperature
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
VN3A 6400 M00

  • Closed loop (compensated) voltage sensor using the Hall Effect
  • Insulating plastic case recognized according to UL 94-V0
  • Mutual shielding between the primary and secondary
  • Primary side resistance R1​ integrated into the sensor
  • High accuracy
  • Good linearity
  • Very low offset drift over temperature
  • Resistant to strong external interference
  • Standards:EN50178: 1997, IEC 61010-1: 2000, UL 508: 2010

more...
HK1V 200 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 400 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 600 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 800 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 1000 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 2000 H00

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 200 H01

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 400 H01

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 600 H01

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 800 H01

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 1000 H01

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...
HK1V 2000 H01

  • Open loop sensor using the Hall Effect
  • Galvanic separation between primary and secondary
  • Insulating plastic case recognized according to UL 94-V0
  • No insertion loss
  • Small size
  • Standards:IEC 60664-1:2020, IEC 61800-5-1:2022, IEC 62109-1:2010

more...

R&D capability

Relying on the CHIPSENSE Electronic technology team and collaborating with Institute of Intelligent Sensing Technology Innovation and Application at North China Electric Power University (NCEPU), we efficiently complete the forward research and development of sensors.